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Abstract. Tandem radical cyclisation of bromide (gb) led to bicyclic ketone (13), an intermediate in the 
synthesis of isoiridomyrmecin (14), demonstrating that highly stereoselective tandem cyclisations from acyclic 
precursors can be achieved if the precursor is suitably substituted. 

We have become interested in using tandem radical cyclisations’ from acyclic precursors (Scheme 1) to 

synthesise cis fused bicyclic products and particularly bicycle-3.3.0~octan-3-ones. 

Scheme 1 

The limitation of this approach is that the yield of such bicyclic products is controlled by the degree of 

cis selectivity on the Fist cyclisation, which is often rather modest. Beckwith has reported guidelines for 

predicting the stereochemical outcome of simple alkyl substituted hexenyl radical cyclisations, so cyclisation of 

(1) gives a predominance of the cis product whereas cyclisation of (2) gives largely trans product. However, 

despite the investigations of RajanBabu in particular, who has studied the stereochemical outcome of 

cyclisations of polysubstituted hexenyl radicals derived from carbohydrates3, it is not clear to what extent simple 

disubstitution can work cooperatively to control the stereochemistry of the cyclopentane product. 

1 73 : 27 2 65 : 35 

We reasoned that if the cyclisation of disubstituted radicals such as (3) followed Beckwith’s guidelines 

and showed high stereoselectivity then an efficient approach to bicyclic products from simple acyclic precursors 

would be possible. 
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We have tested this idea and in this paper we describe our initial results which show that our 

expectations have been real&d and have allowed a formal synthesis of isoiridomyrmecin (14), a member of the 

monoterpene iridoids. 
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In an effort to prepare bicyclooctanones directly we first tried using a nitrile group to terminate the 

second cyclisation4. However treatment of either (4a) or (4b) with Bu+I-I and catalytic AIBN in refluxing 

benzene gave no bicyclic products. Using a trimethylsilyl acetylene group to terminate the second cyclisation, 

reaction of the bromide (4c) (Bu$nH, AIBN) now gave the expected cis fused bicyclic product (5) and the mm 

substituted cyclopentane (6) in 62 % and 16 % yield respectively, although (5) appears to be contaminated with 

approximately 5 96 of the nuns fused bicyclic product. This result mirrors that of Be&with5 who found that 

cyclisation of the bromide (4d) gave 58 % of products resulting from cis selectivity on the fiit cyclisation, and 

23 % from trans selectivity. 
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4a X=CN,Y=Br 
4b X = CN, Y = O.CS.Im 
4c X=ECSiM%,Y=Br 
4d X = CH=CH2, Y = Br 
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We next looked at the effect of introducing a methyl group a to the starting radical. Reductive 

cyclisation of bromide (Sa) (prepared in four steps via an oxy-Cope rearrangement to give aldehyde (7a)) again 

using the Bu$nH method, gave a 71 46 yield of four bicyclic products in the ratio 47:44:5:4 (GC analysis). 

7a,b &b %b 

i) R *MgBr, 50 - 60 %; ii) RI-I, TI-IP, reflux, 60 - 70 %; 

iii) LiCI-@CSiMq, 75 - 80 96; iv) CBr4, Ph3P, 65 - 70 %; v) Bu&II, cat. AIBN 

a:R=H 

b:R=Me 

Gxidative cleavage (Ru04, NaI04) of the double bond gave two ketone products in rather low yield 

(42 95) but in a ratio of 10: 1, indicating that, not surprisingly, the vinyl silane moiety was produced stereo 

randomly. Based on Beckwith’s guidelines* we believe that ketone (10s) is the major isomer and assume (lob) 

to be the minor, although a fruns fused bicyclic system cannot be ruled out. Thus, further substitution with a 
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methyl group has, as &sired, improved the cis selectivity of the first cyclisation, as evidenced by the improved 

yield of bicyclic material (7 1 %), and has proceeded with remarkably high control (X0: 1) of the new C-Me 

stereocentte. 
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In order to verify the stereochemical outcome of this cyclisation, and to show the utility of this 

approach to natural product synthesis, we next synthesised the known bicyclic ketone (13) which can be 

converted in two steps to isoiridomyrme& (14). 

$jQ $p +11 iii)*% e. 
9b 

9 
$ 
H ! 

i) 12, I-I@, C&j, WC; 
ii) PhS02H, H20, CHsCN, RT; 
iii) a) 0s. b) PhsP 

iv) NaOMe, MeOH 

An oxyCope rearrangement gave aldehyde (7b) (>95:5 E:Z) which was converted, as before, to the 

bromide (8b). Treatment with Bu@iH/AIBN now gave a 73 % yield of bicyclic compounds as a mixture of 

isomers. Attempted protodesilylation of the isomeric mixture with 1#120 in refluxing benzene gave the bicyclic 

alkene (ll), the product of desilylation but with double bond migration into the ring, in 89 96 yield. Although not 

the intended result, (11) was obtained as essentially a single product’ emphasising the excellent control over 

three stereocentres exhibited by the tandem cyclisation. The well resolved ‘H NMR of (11) allowed us to 

confii the relative stereochemistry using &e’s (see fig. 1). 

Fig. 1 

Relevant &e’s for 11 

Treatment of (9b) with the milder PhSOaH gave the desired exocyclic alkene (12) in 70 % yield, as a 

mixture of largely two isomers in a ratio 3:1, contaminated with -25 % of (11). Oxonolysis and equilibration 
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with NaOMe/MeOH then gave ketone (13), the thermodynamically preferred isomer, which was isolated as 

essentially a single products in 54 8 overall yield from (9b). The stereochemistry was further confiied by the 

13C NMR which was identical to that reported by Vandewalle6. Finally we prepared bromide (16) with largely a 

(Z:E>WlO) from lactone (15)9 to test whether the double bond geometry would influence the 

stereoselectivity of the first cyclisation as has been suggested elsewhere in the literaturelo. However cyclisation 

of bromide (16) led to bicyclic products (9b) with no significant difference in yield or isomer ratio as compared 

to the cyclisation of (8b). 

0 

0 9 ) co Wvv), hms i), ii), iii) 

i) DIBAL, - 78°C; ii) EtPhsP+I-, BuLi; iii) PDC; iv) LiCH$ZCSiMe,; v)CBr4, Ph3P 

In conclusion a tandem radical cyclisation from an acyclic precursor has led to the preparation of ketone 

(13) in a highly stereoselective manner, completing a formal synthesis of isoiridomytmecin, but more 

significantly, demonstrating that disubstitution can act cooperatively to control stereoselectivity in hexenyl 

radical cyclisations. 
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